AM Da Revision 1.3 March 30, 2008

Radeon R5xx Acceleration

© 2008 Advanced Micro Devices, Inc.
Proprietary 1

AM Da Revision 1.3 March 30, 2008

Trademarks

AMD, the AMD Arrow logo, Athlon, and combinations thereof, ATI, ATI logo, Radeon, and Crossfire are trademarks of Advanced
Micro Devices, Inc.

Microsoft and Windows are registered trademarks of Microsoft Corporation.

Other product names used in this publication are for identification purposes only and may be trademarks of their respective
companies.

Disclaimer

The contents of this document are provided in connection with Advanced Micro Devices, Inc. ("AMD") products. AMD makes no
representations or warranties with respect to the accuracy or completeness of the contents of this publication and reserves the
right to make changes to specifications and product descriptions at any time without notice. No license, whether express, implied,
arising by estoppel, or otherwise, to any intellectual property rights are granted by this publication. Except as set forth in AMD's
Standard Terms and Conditions of Sale, AMD assumes no liability whatsoever, and disclaims any express or implied warranty,
relating to its products including, but not limited to, the implied warranty of merchantability, fitness for a particular purpose, or
infringement of any intellectual property right. AMD's products are not designed, intended, authorized or warranted for use as
components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or
in any other application in which the failure of AMD's product could create a situation where personal injury, death, or severe
property or environmental damage may occur. AMD reserves the right to discontinue or make changes to its products at any time
without notice.

© 2008 Advanced Micro Devices, Inc. All rights reserved.

© 2008 Advanced Micro Devices, Inc.
Proprietary 2

AM Da Revision 1.3 March 30, 2008

1. INTRODUCGTIONcoceteittnertenerenerencrenernscrensernsessssessssssnsessssssnsessssssssesasssssssssssssassssnsessssssnsessssesnsessnsesassssnsssnnsns 6
1.1 INTRODUCING THE RSXX FAMILY 1.vuuuuutuuuuuuunuennnsunnsssnessnsnssssessssssnsssssssssssssssssssssssssssssnsnsnssssnnssnssnsnnnnnnnnnnnnsnnnsnnnnnnnnnn 6
1.2 FEATURE HIGHLIGHTS
1.3 FEATURES IN DETAIL 1uvuvuvuuuuuussssssusssnsssnsssssssssssssssssssssssnssnssssnsssssssssnssnssnnnsnssnsnnnnnnnnnn
1.4 CHANGES FROM R3XX/AXX . .cuvvteereeeeteseeteeeeteeeeeeeesesesseeeesesesseeeesesessesensesessssensesessssenseseasssensesessssensesessssensesessseensees 7

2. TILING . e citeeeetttenertennettensetennseeresnseesennsesssnnssssenssssssnssssssnssssssnssssssnssssssnssssssnsssssanssssssnssssssnsssssnnssessanssessansssee 9
2.1 OVERVIEW 1. iieieeeeeieieseiesssesssesesesesesssesesesssssssessseseessesssssssseesesssseseeees 9
2.2 IMHICRO BLOCKS ... ettueettiee ettt e ettt e et e e ettt e e ettt eeeta e ettt e eeataeesaaaaeesansesssanaessnnnssssnnesssnnesasnneesssnnsesssnsesssnnesssnnneenes 9
2.3 IMIACRO BLOCKS 1vvvvuvuvurusssnsssnssnsssssnssssnssnsnnsnnsnnnnnnnnnn 9

3. SURFACE FORIMATS ...cuiiiiteeiitennieiteesieniensietsssssesssnsssssssssssssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnssssssnnssssannnns 11

4. COMMAND PROGCESSORccceuceertenneerennseerennseerennseerenssessssssessssssssssnssssssnssssssnssssssnssssssnssssssnssssssnssesssnssssssnsssses 13
4.1 OVERVIEW ...eetttttieeeeeteetttueeeeeeretatataeeesssesssannesesssssssaneeeesssssssasseesssssssnnsesesssssssannsesesssssssnnnsesessssssnnnesesssssssnnnnns 13
4.2 HOST PROGRAMMING IMODEL DESCRIPTION ...uuuvuuuuusssnsssnsnsssssssssssnsssssssnssnssssssssssssssssssnnssnnssnsnssnnnssnnnsnsnsnnnsnsnnnnnnnne 13
4.3 PUSH VS PULL IMIODEL ...eievttiiiiee e e eeeeetieee e e ettt e e e e e e e etabee e e e eeeeaasa e eeee s e e s baa e eeessessbanaesesesssstannseeesssssasannseeeessssen
4.4 RING BUFFER MANAGEMENT
4.5 CHIPSET COHERENCY ISSUES. .. ciiitttttieeeeeeetettiiieeeeeeeeetasiaeseseseeesasaaeseessesstaaaesesssssstansesesssssaraneseesssssrsnaesesssssssnnnnns
4.6 INDIRECT BUFFER IMIANAGEMENT 11vvuvuuutuussssssssnsssnssssssssnnsssnnsssnnnnnnsnnnnnsnnnnn 16
4.7 OVERVIEW OF DIVIA OPERATION ...vtuuueteiertrurteeeeeseresssiieseeesssssssiesessssssssnaesessssssssnmeesessssssnmeeessssssssmeeeessssssssnnnns 17
4.8 RESETTING THE COMMAND PROCESSOReeievvvutiieeeeeeeretsnieeeeersssssnneseesssssssnnnesessssssmsnmaesessssssssmneesessssssnnesesssssssns 19
4.9 COMMAND STREAM SYNCHRONIZATION ...eeeeeeeeeeeeieeeieieieieieeeeeeeeeieeeeeeeseeeseeeeesesesesesesaseseeeseseseeeeesesesesesesesssseeseseeees 19
4.10 STARTING THE INDIRECT STREAMSeeeettttttieeeeereeessnneseeeresstsnnaaseessssssnnsesesssssssnnesesessssssnnaesessssssssnneeseessssssnneeeseees 20
4.11 WRITING HOST DATA TO THE COMMAND STREAM QUEUE ...cvvvvuieeeeeeiieiiieseeeeeeeiannesesesssssnnnesesessnssnnnsesessennnnnneaesenes 21
4,12 WHRITING TO THE MICROENGINE RAIV ...ciitiiie ittt e e eeeetiee e e e e et ettee e e e e e eeatataeeesessessaannnseessssssannnaseeessssnnnnaaneens
4,13 READING FROM THE MICROENGINE RAM
4.14 STARTING A DIVIA OPERATION 1ttuuuieeeerertuuieeeeeeeeessnnieseeesessssnaasesssssssmnsesessssssssnesesessssssnnmesessssssssnmeesessssssnneeeseees

5] N 24
5.1 P ACKET TYPES «.eetttuueeeeeeettttuiaeeeeeerstuueaeseeeresssannsaeeesrssssannseeessssssnnnseesssssssnssssessssssssnnseseeessssssnnsesessssssnnnneeeessssnnn 24
5.2 DEFINITION OF TYPE=3 PACKETS ..uuuuuuuuuuununsnunnnnnnnnnnnnnnnnsnsnssnnnnsnsnsnsnsnsnsnnnnsnnsnnssnsnnnsnnnsnnnnnnnsnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnn 28

6. VERTEX SHADERSccuuiitteuiirteenereeenereensiereenseresnssesessssssessssersssssssensssssssssssssnssssssnsssessnssssssnnsssssnnsssssnnssssannnns 54
6.1 INTRODUGCTION ..utttuuuuuruensnsssnsnsssssssssnssnsssssssssssnnsssssssssssnsnsssssnsssnsnnsnssnnnsssnsnnssnsssssssnssnssnssnnnnnnnnnnnnnnnnnnnnnnsnnnnnnnnnnn 54
6.2 I PUT cetttteee e et e ettt ie e e e et ettt eeeeeeeeesa st s eeeessssasaanaeeessasasannsasessssssnnnnseaesssssannsnseesssssnannnesesesssstnnnseeeessssnnnnneeesesnnnen 54

6.3 VECTOR ORDER AND VECTOR ID’s
6.4 VAP REGISTERS

6.5 R3XX-R5XX PROGRAMMABLE VERTEX SHADER DESCRIPTIONuuuuvuuueunnnnennnnnnnnnnnnnnnnnsnnnsnnnsnsnnnsnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn 66
6.6 SETTING-UP AND STARTING THE VAP ...ceittiieie e ettt e e e eeeettiee e e e e eeeast e e e eeeeeasataaseseseessaannnseeesssssannesesssssnnnnnaaeeees 96
6.7 METHODS OF PASSING VERTEX DATA ...uuuuuuuuuuuunuuunuununennnnnnnnnnnnnnnnnnnnnnnsnnnnnnnsnnssnnnsnsnsnsnnnsnsnsnsnssnnnnsnnnnnnnnnnnnnnnnnnnnnnn 97
7. FRAGIMENT SHADERScceuciitteiirttenerteenereeesiereensereessseresssseressssessssssessssssssssssssssnssssssnssssssnsssssensssssennssssannnes 98

© 2008 Advanced Micro Devices, Inc.
Proprietary 3

AM Da Revision 1.3 March 30, 2008

7.1 INTRODUCTION 1..ttteuteetteesuseesureessaeessseassseessseessseessseaasseessseasssesssseasssesssseasssessssessssessssesssssssssesssseesseensseessseenssens
7.2 INSTRUCTIONS . ttteuveesuteesureesuteesueeesuteesuseessseessseesuseesuseessseensseesssesssseesssesnssessssesssseesssesnsesesssesssenesssesssseessesnsees
7.3 INSTRUCTION WORDS
7.4 ALU INSTRUCTIONS ...eeuveeureesureesureesseessteesseesasesssseesasessssessssessnsessssessnsesssessnsessssessnseesasesssseessessnsessnsessnsessses
7.5 TEXTURE INSTRUCTIONS ...vteeeuttteeenuureeesuueesanuteeessseeesssseessnsseessssssesssssssesssssssssssssessssssessssssesessnssessssseessnssenesnnns
7.6 FLOW CONTROL. ...ttttteeeeeeeitetteeeeeese ettt e e e e e seauasbe et eeeese s babeeeeeee s asbbaaeaeeeesansabbaeeeeesaasnbaaeeeeesasnssbeaeeeesasaanses
7.7 FLOATING POINT ISSUES ..t uvteeutetetie sttt enitessteessttesteesbaesseessasessseeessteesseeesssesnseeesssesssseesasesnssnesssessaseesnsesnsneenns
7.8 WRITING TO US REGISTERS...cttttteiuiutttteteeeeesttetteeeesesattetteeeesesaubsttteeeeesasaunbataeeeesesanbebeeeeesesanbsstaeeeeesassnsaaeeas
8 72N
8.1 INTRODUCTION ...ttt s
8.2 ENABLING HIZ ..oiteeiiieesieeeieestee et ete et e et e et e et et s bae e be e e s ateebteesbteebteessbeeaeeessbeanaseesabeenaseesaseesnseesnsaennseenns
8.3 CONFIGURING HIZtiieeeiiee ettt ettt ettt e sttt e e sttt e e saaee e e sntteeeeaateeesasaeeeesbeeesanseeeesnsaeeeansseeesnnsneesssseeenn
8.4 HIZ CLEAR WITH PIMIA PACKET ..ttt euvteeteeette ettt estteeteesbaesseeessaesnseeenseeensesesssesnsssesssesssssesssesssssesssesssesssessseesns
8.5 EXAMPLE: PUTTING IT ALL TOGETHER
8.6 STATE CHANGES THAT INVALIDATE HIZ 1.uvttiiieesite ettt st st site e stte e siteesate e siteesaae e saaeesaaeesateebaeesntesnbaeesaseenseeas 124
9. DRIVER NOTES.....cccittiurteiiiiiiissinneetiiississsssssesssissssssssssessssssssssssssesssssssssssssssssssssssssssssessssssssssssssesssssssssssnnnens 125
9.1 REXX CHANGES «..vtteuveesuteesuteesteeesseesueessssesseesnssessesssssesnsesesssesnsssenssesnsesessseensssssssesssssesssesssseessseesssessnsesssseesns
9.2 INTERFACE INOTES .. ttteeettteeeetteeeeuteeeesutteesauteeesauseeeesssaeeeesseeesassssesssseesesssaeessnssesesnnssesssnsenessnnsessssnsneessnseesn
9.3 REGISTER INOTES .ttt tuttesuteesuteesteeesteesteeestsesseeensseenseesnsaeansesesssesssssessseensesesssesnsssssssesssseesssesnsseessseesseessseessseesns
9.4 FEATURE INOTES oeuttteeeittteeeetteeesetteeeesteeeesuteeesassseeesssaeesessseeesassssesssseesssssesesanssesssnnseessssssnessnssessssnsneessnsseesn
9.5 BLEND OPTIMIZATION NOTES
9.6 TEXTURE INOTES...eeutteeuteesiteesteestteesstesuteesuteesabeesaseesabeesaseesabeeaaseesabeeeaseesabeeeaseesabeeeaseesabeesaseesabeesnseesabaeenseesanes
9.7 B RRAT A ettt ettt ettt ettt et e e e e ettt et e e e e e a b bt e e e e e e e b b ettt e e e e e e abheaeteeeeeaanheeeeeeeeesa e nnrateeeeeeaaannraeeeeeeaeaanre
10. REGISTERSciiiiiiuetieiiiiiiiiinnttetiiisssssssstessssssssssssssessssssssssnssessssssssssssssessssssssssssssessssssssssssssensssssssssssnnnnns 138
10.1 COMMAND PROCESSOR REGISTERS ...ceteteiauutrereteeesasunreteeeeeseaasretteeeesesaaussseeeeeessasnssenesesssasannreneeeessesaansenseeeesesnn 138
10.2 COLOR BUFFER REGISTERS ...eeuuvteutteriteenuttesiteesuteesuteesuteesseessueeesssessseeesusesssseesssesssesesssesssesesssesssesesssesssesesnsesssenes 147
10.3 FOG REGISTERS. ... uttttteeeeeeiittt et e e e e e sttt et e e e e se bttt e e e e s e aan b et e eeee s e s asbe e et eeeeesannbs st e eeeeesansnbeeeeeeesannnsraneeeeesanannnes 163
10.4 GEOMETRY ASSEMBLY REGISTERS ...eeuveesueeesureesueeenureanseeesseessueeesueessueeesssesssesesssesssesesssesssesesssesssesesssesssseessessssees 166
10.5 GRAPHICS BACKEND REGISTERSvtttetesesauuereeeeeseaaaunseteeesesaaausseneeesesasannssseeesesssasnssseesesssanannseseeeessesanssseeeeesesnn 177
10.6 RASTERIZER REGISTERS
10.7 CLIPPING REGISTERSttttteeeeeeiitttteeeeeeaaiiettteeeeeseuebe et e eeeaeaaasbbe e eeeeeesa s bas et eeeeesaanssebeeeeesaaannbaneeeeeeeaannraneeeeesean
10.8 SETUP UNIT REGISTERS
10.9 TEXTURE REGISTERS.etttteeeeeeiutetteeeeeeaaiusteteeeessaauusbeteeeeeaaausbeeeeeeeaesaansaeeeeeeeesannnbeeeeeeesaannnbebeeeeesasannbanaeeaeaean
10.10 FRAGMENT SHADER REGISTERS ..vteuveeureesureesuteesseesuteesseesuteesseesuseessseesusessseessseesnseessessnseessessnsessnsessnsessses 216
10.11 VERTEX REGISTERS .. ceeeteeuuutttteeeeeeeeutttteteeesseausbe et e eeeaesausbe e eeeeeae s anbee e e e e e e e s nbeseeeeeaesaassseeeeeesaaannnbaneeeeesanannnen
10.12 Z BUFFER REGISTERS

© 2008 Advanced Micro Devices, Inc.
Proprietary 4

AM Da Revision 1.3 March 30, 2008

© 2008 Advanced Micro Devices, Inc.
Proprietary 5

AM Da Revision 1.3 March 30, 2008

1. Introduction

1.1 Introducing the R5xx Family

The R5xx family provides the fastest and most advanced 2D, 3D, and multimedia graphics performance for desktop
PCs in the performance mainstream markets. The R5xx family supports Shader Model 3.0, advanced memory
interface technology, a brand new display controller and a consumer electronics (CE) quality TV (NTSC/PAL)
encoder. The R5xx family represents AMD’s 2nd generation PCI Express technology product and leverages a brand
new graphics architecture. The R5xx family builds on the R3xx architecture. As such, much of this guide is
applicable to R3xx and R4xx chips as well with some caveats. Where applicable, generational differences are noted.

1.2 Feature Highlights
1.2.1 Shader Technology

Support for Microsoft® DirectX® 9.0 programmable vertex and pixel shaders in hardware.
Shader Model 3.0 vertex and pixel shader support.

Full speed 32-bit floating point processing.

High dynamic range rendering with floating point blending and anti-aliasing support.

High performance dynamic branching and flow control.

Complete feature set also supported in OpenGL® 2.0.

1.2.2 Anti-Aliasing

o 2x/4x/6x Anti-Aliasing modes.

e Sparse multi-sample algorithm with gamma correction, programmable sample patterns, and centroid
sampling.

¢ New Adaptive Anti-Aliasing mode.

e Temporal Anti-Aliasing.

e Lossless Color Compression (up to 6:1) at all resolutions, up to and including widescreen HDTV.

1.2.3 New Ring Bus Memory Controller

Programmable arbitration logic maximizes memory efficiency, software upgradeable.

New fully associative texture, color, and Z cache design.

Hierarchical Z-Buffer with Early Z Test.

Lossless Z-Buffer Compression (up to 48:1).

Fast Z-Buffer Clear.

Z Cache optimized for real-time shadow rendering.

Optimized for performance at high display resolutions, up to and including widescreen HDTV.

1.3 Features in Detail
1.3.1 2D Acceleration Features

o A highly optimized 128-hit engine, capable of processing multiple pixels/clock.

© 2008 Advanced Micro Devices, Inc.
Proprietary 6

AM Da Revision 1.3 March 30, 2008

1.3.2

Hardware acceleration provided for BitBLT, line drawing, polygon and rectangle fills, bit masking,
monochrome expansion, panning and scrolling, scissoring, and full ROP support (including ROP3).

Optimized handling of fonts and text using ATI proprietary techniques.

Game acceleration including support for Microsoft's DirectDraw: Double Buffering, Virtual Sprites,
Transparent BLT, and Masked BLT.

Acceleration in 8/15/16/32-bpp modes.
Support for WIN 2000 & WIN XP GDI extensions: Alpha BLT, Transparent BLT, Gradient Fill.

Hardware cursor support up to 64x64x32-bpp, with alpha channel for direct support of WIN 2000 & WIN
XP alpha cursor standard.

3D Acceleration Features

Fully DirectX 9.0 compliant, including full speed 32-bit floating point per component operations.
Shader Model 3.0 support with programmable vertex shaders (full operand and operation support) allowing
up to 1024 instructions and 256 vectors of constant store. This includes vertex shader loops, branches, and
subroutines, which allow support of the following:

o 1024 vertex shader instruction store.

o 261,888 instructions with a single loop.

o 4+ trillion instructions with nested loops.

o Dynamic flow control.

o 8 full vertex processing units.
Advanced pixel shaders with the following features:

o New advanced shader design, with ultra-threading sequencer for high efficiency operations.

o Full Pixel Shader 3.0 support.

o Advanced, high performance branching support.

o 32-bit floating point support for high dynamic range computations.
Full anti-aliasing on render surfaces up to and including 64-bit floating point formats.
Support for 2xAA, 4xAA and 6xAA subsamples, with little performance loss in most cases.
Advanced AA quality algorithms, generating visuals that are superior to other solutions with an equivalent
number of samples.
New adaptive anti-aliasing modes dynamically select between fast multi-sampling and high quality super-
sampling per polygon, delivering the benefits of both techniques.

1.4 Changes from R3xx/4xx

Changes from R3xx to R4xx

Support for 1, 2, 3 and 4 quad pixel pipes

Support for 1 to 6 vertex shader pipes

HDTYV resolution support for HiZ

Support of 16x16 and 32x32 pixel tile sizes (32x32 should now be the preferred amount)
Vastly redesigned Memory controller, with new client interfaces

Support for 8b of subpixel precision

Native support of 4Kx4K raster target

PS instruction support now at 512 each for Scalar, Vec3 and Texture (1536 total instructions)
VS native support for Sin/Cos

TX Component swizzling

Enhanced texture performance

MRT and wide pixel performance fixes

© 2008 Advanced Micro Devices, Inc.

Proprietary

AM Da Revision 1.3 March 30, 2008

Fog alpha rounding matches RGB

Line stipple fixes; SU texture stuffing improvements

LOD Clamp/bias re-order

2D support for larger pixels (Pitch at 16b)

4x AA buffer tiling is changed when memory mapping is not used

Changes from R4xx to R5xx

New Memory controller

Support of VVS3.0 features, except Vertex fetch

Support of all PS3.0 features, including extended GPRs and Constants, all branching and predication
New FP32 US, including most IEEE NANS, INFs behavior corrected (still TRUNC rounding mode)
Support of new Z range [-2,2], with per pixel clamping in SC

Support of up to 11 texture sets (10 explicit), or 44 iterators

Support of color to texture mappings, and texture to color mappings (for performance improvements)
New IS_IP for better mapping of components from VS to PS

Color now in FP20 mode, instead of S3.12 mode

New HiZ compression mode, allows high precision Z values to be stored

New FP16 render surfaces support, including blending and all backend functions, but not texture filtering
Fully set associative caches for Texture, Color, and Z

New more efficient fifos for all MC clients

New Filter4 mode for Texture unit

New 1b texture mode for texture unit

© 2008 Advanced Micro Devices, Inc.
Proprietary 8

AM Da Revision 1.3 March 30, 2008

2. Tiling
2.1 Overview
R3xx-R5xx support two types of blocks

e Micro block
e Macro block

Each block type can either be linear or tiled.

2.2 Micro Blocks

A micro block refers to a 32-byte consecutive data in memory. It is aligned to a 32-byte boundary, which means that
the 5 LSBs of a micro-block address are zeros. Micro blocks can be linear or tiled. Linear maps a 1D area of an
image to the block. Tiled maps a 2D area of an image to a block. The following table shows the different type of
micro blocks and the region of the 2D image that maps to it (x X y)

Micro-linear Micro-tiled
8 bit pixel 32x1 pixels (x=32, y=1) 8x4 pixels (x=8 , y=4) supported by : tx/cb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 4x4 pixels (x=4 , y=4) supported by : tx/cb/zb/hdp
16 bit pixel 16x1 pixels (x=16 , y=1) 8x2 pixels (x=8 , y= 2) supported by: tx/cb/hdp/disp
32 bit pixel 8x1 pixels (x=8, y=1) 4x2 pixels (x=4 , y=2) supported by: tx/cb/zb/hdp/disp
64 bit pixel 4x1 pixels (x=4,y=1) 2x2 pixels (x=2 , y=2) supported by: tx/hdp
128 bit pixel 2x1 pixels (x=2, y=1)

2.3 Macro blocks

A macro block refers to a 2K-byte consecutive data in memory. Macro-blocks loosely refer to the size a DRAM
page. How micro tiles are arranged in a macro-tile is controlled by whether the macro-block is linear or tiled. Linear
macro block maps x-order sequential array of micro-blocks to a macro-block. When the end of the current scan is
reached, the macro-block continues with data from the next micro-tile in the next scan. The alignment for Linear
macro-blocks is 32 bytes. An image can generally be more compact using macro-linear, but it is typically slower in
rendering performance. Tiled macro-blocks map a 2D region of micro-blocks into a macro-block. Tiled macro-
blocks are aligned to a 2K-byte boundary, which means that the 11 LSBs of a macro-block address are zeros

There are 64 micro-blocks in a macro-block (2k divided by 32 bytes). In a tiled macro-block these 64 micro-blocks
are arranged as an 8x8. The number of pixels in x and y that map into a tiled macro-block is based on pixel size and
micro-block type. Multiplying the data from the previous table by 8 can do this:

© 2008 Advanced Micro Devices, Inc.
Proprietary 9

AM Da Revision 1.3 March 30, 2008
Macro-tiled Macro-tiled
Micro-linear Micro-tiled

8 bit pixel 256x8 64x32

16 bit pixel (8x2) | 128x8 64x16

16 bit pixel (4x4) | 128x8 32x32

32 bit pixel 64x8 32x16

64 bit pixel 32x8 16x16

© 2008 Advanced Micro Devices, Inc.

Proprietary

10

AM Da Revision 1.3 March 30, 2008

3. Surface Formats

This section describes all of the surface formats used by the R3xx-R5xx texture units and frame buffers. These
formats are first listed in summary, together with a list of features (fog, blend etc.) supported by each format.

8-bit Formats

Format Layout Range | Display Blend| Fog Dither| Filter

CcC8 |7 e °| 0.0 to 1.0 (unsigned) | Yes Yes | No | Yes | Yes
-1.0 to +1.0 (signed)

C2 4 |7 63 4|3 2 OI 0.0t01.0 Yes No [No | No | Yes

cC332 |7 = 5| A 2| 100°| 0.0to 1.0 Yes No | No | No | Yes

16-bit Formats

C 16 |*5 413211109 8,765 4.3 2.1 OI 0.0 to 1.0 (unsigned) | No No | No | No | Yes
-1.0 to +1.0 (signed)

C 16 _MPEG |*5 4131211109 8,765 4321 OI -1.0to +1.0 No No | No | No | Yes

C 16 FP |15 1413 121110 9 8(37 6 5 4 3 2 1 ol 2B g 4216 No No | No | No | No

— = 0

C2_8 |15 14 13 120111 10 9 8| 7. 6_5 4(:[)3 2 1 OI 0.0 to 1.0 (unsigned) Yes Yes No Yes Yes
-1.0 to +1.0 (signed)

C565 |*5 141312 “|10 4818 5| 432 OI 0.0t01.0 Yes Yes | Yes | Yes | Yes

C_6_5_5 |15 14 130212 11 10| 9 8'071 6 5| 4 _3 020 1 OI 00 to 10 (Un.Signed) NO NO NO NO Yes
-1.0 to +1.0 (signed)

C4 4 |15 1413 12|“ 109 8|7 a4 4|3 2 OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes

C1555 |ég|14 131211 10| Baa e 5| 432 OI 0.0t01.0 Yes Yes | Yes | Yes | Yes

32-bit Formats

Format Layout Range | Display Blend| Fog Dither| Filter

C4_8 s 24| = 16| = 8| % °| 0.0 to 1.0 (unsigned) | Yes Yes | Yes | Yes | Yes
-1.0 to +1.0 (signed)

C4 8 GAMMA s 24| = 16| = 8| % OI 0.0t01.0 Yes Yes | Yes | Yes | Yes

C_11 1110 | =4 | 1 | — °| 0.0 t0o1.0 (un;igned) No No [No | No | Yes
-1.0 to +1.0 (signed)

C 10 11 11 = 2 | & | = OI 0.0to 1.0 (uns_igned) No No | No | No | Yes
-1.0 to +1.0 (signed)

C_2_10_10_10 &l 4 | B | —= °| 0.0 to 1.0 (unsigned) | Yes No | No | No | Yes
-1.0 to +1.0 (signed)

C2_16 | 4 16| s °| 0.0 t0o1.0 (un;igned) No No | No | No | Yes
-1.0 to +1.0 (signed)

C2_16_MPEG | 4 16| & OI -1.0to +1.0 No No [No | No | Yes

© 2008 Advanced Micro Devices, Inc.
Proprietary 11

AM Da Revision 1.3 March 30, 2008

C2_16_FP | 24 . & 9 | -2°t0+2" No No | No |No | No
C_32_FpP | z 18 § |27 042" No No | No [No | No
C AVvYU % 24| 7 16| 7 SI ¥ °| 0.0t01.0 Yes Yes | Yes | Yes | Yes
C_VYuYy v 24| = “‘i 7 8| ~ 0| 0.0to 1.0 Yes Yes | Yes | Yes | Yes
C_Yvyu v 24| v 16| 7 8| 5 OI 0.0to 1.0 Yes Yes | Yes | Yes | Yes
64-bit Formats
C4 16 | 5 4i3 4 3|2 4 1|6 & I 0.0 to 1.0 (unsigned) | No No | No [No | Yes |
-1.0 to +1.0 (signed)
16 16
C4_16 _FP | %63 4i3 ‘éoz 3|2 é“l 1‘|3 é‘o °| -27 10 +2 No No [No [No | No
C2 32 FP [l BBl | 27 10 42 No No [No |[No |No

128-bit Formats

Format Layout Display Blend| Fog | Dither| Filter

C4_32_FP e e -27"to +2 No No | No | No | No

S G

=S

Depth Formats

Format Layout Write Read
24 16 8 0 “_
W_24 | AT Tnae |) Oto27-1 Yes No
24 16 8 0 063 63
W_24 FP | AT Inae |) 2710 +2 Yes Yes

© 2008 Advanced Micro Devices, Inc.
Proprietary 12

AM Da Revision 1.3 March 30, 2008

4. Command Processor

4.1 Overview

The Command Processor is a programmable processor that is meant to provide some on-chip intelligence for a
Graphics Controller device. The CP architecture has been approached as a special-purpose computing engine,
targeted at fetching and interpreting a PROMO4 command stream.

The Command Processor takes on several tasks in a typical Graphics Controller:

e Acts as a receiver of command streams from the video and graphics device driver(s) running on the host
CPU. These command streams are either read from system memory using bus-mastering on the PCI or
AGP bus, or directly written to the CP from the host CPU using the PCI or AGP (fast-write) bus. Three
streams are supported — one Ring Buffer and two Indirect Buffers.

e Parses and interprets a command stream, and writes the parsed data to internal “Feature” modules of the
Graphics Controller device; for example, a 3D graphics processor, a 2D graphics processor, a Video
Processor, or an MPEG Decoder. The data writes can be 32, 64, 96, or 128 bits per clock. The 64, 96, and
128 bit writes will occur for “Vector Write Mode”. Vector write mode is valid when the stream (PQ, 1Q1,
1Q2) is in Pull Mode. Push mode will only write DWORDs (i.e. Lower 32-bits of the 128-bit data bus will
be valid with a DWORD_Enable = “0001”. The 64 and 96-bit writes will only occur while the alignment of
the data is not on a 128-bit boundary.

e There are two general-purpose DMA engines inside the CP, one for GUI-related tasks, and one intended for
Video Capture tasks. The DMA engines do byte alignment between the source and destination surfaces.

4.2 Host Programming Model Description

This section describes the manner in which the host CPU communicates with the graphics controller chip.

4.3 Push vs Pull Model

The Push Model is also referred to as Programmed 1/0O (P10O). In this model the host CPU is writing to the graphics
controller chip across either the PCI or AGP bus. That is, the host is “pushing” command information to the
graphics controller. This information is in one of two forms:

1) A sequence of register writes to setup the state of a processing engine on the graphics controller, and
then starting the engine running. Typically, engines are started as a side-effect of writing to a special
“trigger” or “initiator” register.

2) A sequence of Command Packets, which are a “compressed” way of conveying the command
information to the graphics controller, relying on an intelligent processor in the graphics controller to
convert the command packets into register writes to other processing engines in the graphics controller.

It is expected that option (1) above will only be used for debug purposes.

The Pull Model utilizes bus-mastering on the part of the graphics controller, as it actively goes out and reads from an
area of system memory in which the host CPU has previously placed command information. An important part of
the pull model is how the host and the graphics controller manage access to the shared buffer in system memory.
This is discussed in the following section.

The pull model allows more slip between the CPU and the graphics controller than does the push model, assuming
that the command buffer for the push model is limited to on-chip storage.

The push model may have some advantage when the overall system performance is taken into account as it lightens
the bandwidth demand on system memory as compared to the pull model. The push model may be able to make-up

© 2008 Advanced Micro Devices, Inc.
Proprietary 13

AM Da Revision 1.3 March 30, 2008

for its limited slip by implementing an on-chip command buffer that “spills-over” into the frame buffer; however,
this of course begins to place a demand on the frame buffer bandwidth to write and read the command buffer.

The Command Processor will support both the push and pull models; however, switching between these two models
must be carefully controlled. It is intended that switching is not done often; most likely the model is chosen at reset
time, and never changed once the system is running. The pull model is the preferred choice for systems that allow
bus-mastering, and whose API allows concurrent processing between the host CPU and the graphics controller,
primarily because of its superior capability for overlapped processing. The push model is available for systems that
are not well-suited to using the pull model.

4.4 Ring Buffer Management

When the Graphics Controller is set to operate in the bus-mastering mode (pull model), the host application, say a
driver, has to allocate a block of system memory as a buffer for the command packets it issues to the Graphics
Controller. The command packets, or simply packets, instruct the Graphics Controller to carry out operations such
as drawing objects on the screen. This memory block is treated as if it is a ring that allows the packets to be placed
into and taken away from the memory in a circular manner, thus the name Ring Buffer.

The Ring Buffer is a shared memory space between two cooperating processors. It is used to implement one-way
communication from the Host processor (the Writer) to the Graphics Controller (the Reader). Each processor must
maintain the state that it believes that the Ring Buffer is in. The state is composed of:

o Buffer Base: The address of the beginning of the buffer.

e Buffer Size: The size of the buffer.

e Write Pointer: The address that the Host is writing to.

¢ Read Pointer: The address that the Graphics Controller is reading from.

In order for the Ring Buffer to work properly, both processors must maintain a consistent view of this state. The
Buffer Base and Buffer Size are generally initialized when the system is first brought-up, and rarely changed after
that point. It is a simple task to initialize both the Reader’s and the Writer’s copies of this state. The Read and
Write Pointers, on the other hand, change quite frequently as the Ring Buffer is in operation. In order to achieve
consistency, when the Writer (the host) updates the Write Pointer, he must send that value to the Reader’s (the
Graphics Controller’s) copy of the Write Pointer. And similarly, when the Reader updates the Read Pointer, he must
send that value to the Writer’s copy of the Read Pointer.

Packets are placed into the memory block, or buffer, from the beginning towards the end, i.e., from lower addresses
toward higher addresses. Once the data placement hits the end, it starts from the beginning again. Meanwhile, the
packets are consumed from the head of the queue in a manner similar to how they were placed.

Figure illustrates how the ring buffer operates when combined with the bus-mastering operation.

© 2008 Advanced Micro Devices, Inc.
Proprietary 14

AM Da Revision 1.3 March 30, 2008

Host start of buffer = end of buffer Graphlcs
- - : Controller
Write Pointer Address !
Buffer Base - , : - Write Pointer -
Buffer Size o Read Pointer

Write Pointer

Buffer Base

v ReadPointer)

Buffer Size

IE 3
X
. 3
Ring Buffer Packets Bus %
Server ' g
Mastering ©
Unit S
€
Q
O

Driver(s) free area

Read Pointer
Address

. Execution
Legend: | Regiser | | g

Figure: Ring Buffer and its Control Structure

In the figure, packets are placed into the buffer in a counter-clockwise order, forming a packet queue. The first
packet in the queue is denoted by P, , and the last by P, . The start of the queue, P, is pointed to by the Read

Pointer(s). The memory portion that is not occupied by packets is called the free area, and it is pointed to by the
Write Pointer(s).

Initially, both the read and write pointers may point to the same location of the ring buffer, e.g. the start of the
memory block. The two pointers pointing to the same location of the ring buffer generally implies one of two
situations. One is that the buffer is empty, and the other is that the buffer is full. We want to define this situation as
an empty buffer. To resolve the ambiguity of both pointers being equal, we must prevent the case of a full buffer
from ever happening. It is the Host’s responsibility to ensure that there is at least one free location in the buffer.

On the host side, the driver places command packets into the free area of the ring buffer, and informs the Graphics
Controller of any changes to the Write Pointer by writing directly to the Write Pointer register inside the Graphics
Controller. The host tracks free-space in the buffer by comparing its Read and Write Pointers, and suspends writing
if the buffer becomes (almost) full.

On the Graphics Controller side, packets are taken away one-by-one from the head of the packet queue, pointed to
by its Read Pointer, through the Host Bus Interface, and placed into the Command Packet Buffer. As the Graphics
Controller updates its copy of the Read Pointer, it uses a bus-mastering write to update the Host’s copy of the Read
Pointer, residing in a shared memory location. The Graphics Controller has a register that holds the memory address
of where the Host’s Read Pointer resides, and uses that for the address of the bus-mastering write. The Graphics
Controller tracks free-space in the buffer by comparing its Read and Write Pointers, and suspends reading if the
buffer becomes empty (i.e., Read Pointer == Write Pointer).

To reduce traffic on the system memory bus, the Graphics Controller should not update the Host’s copy of the Read
Pointer every time it changes on the Graphics Controller side. To facilitate this, we have adopted a concept of a

© 2008 Advanced Micro Devices, Inc.
Proprietary 15

AM Da Revision 1.3 March 30, 2008

block of dwords in the packet queue. The Graphics Controller will update the host’s copy of the Read Pointer every
time it has consumed a “block’s-worth” of data from the ring buffer. The other time when the Graphics Controller
will update the Read Pointer is when it thinks that the packet queue is empty. The size of the block is
programmable, to allow the programmer to trade-off the amount of time the system bus spends doing real data
transfer vs the amount of time it spends on the communication overhead of updating read/write pointers. Larger
block sizes tend to reduce communication overhead, at the “expense” of reducing the number of blocks in the queue,
which reduces the amount of “slip” (or de-coupling) between the Host and the Graphics Controller.

To reduce traffic on the system memory bus, the driver may want to minimize the frequency of accesses to its copies
of the Read and Write Pointers. To minimize reads of the Read Pointer, it can check them once, calculate an amount
of free space, and then decrement a local copy of the amount of free space as it adds packets to the queue. When it
sees that the free-space is small (queue nearly full), it can start this procedure over again. (Its copy of the Read
Pointer may have changed since the last time he read it.) The host also has the option of updating the Graphics
Controller’s Write Pointer on a less-frequent basis than with every write he does to the packet queue, possibly on a
block-basis similar to the Graphics Controller’s mechanism. However, if the buffer is running close to empty, any
delay in updating the Graphics Controller’s Write Pointer may add latency to the Graphics Controller’s response to
this command packet. Also, the host must be careful to update the Graphics Controller’s copy of the Write Pointer
if it wants the Graphics Controller to read from the queue until it is empty.

When the queue has become (almost) full, the host will have to poll the Read Pointer until space becomes available.
In certain systems (Pentium Il for example), this polling will stay within the processor cache, thus avoiding traffic
on the system bus, and the snoop logic of the host CPU will take care of maintaining consistency between the main
memory and the processor cache when the Graphics Controller performs its bus-mastering write of the Read Pointer.
It is important to note that the Read Pointer must reside in PCI space in order for this snoop technique to work.

AGP writes are not snooped.

4.5 Chipset Coherency Issues

The Rage128 product revealed a weakness in some motherboard chipsets in that there is no mechanism to guarantee
that data written by the CPU to memory is actually in a readable state before the Graphics Controller receives an
update to its copy of the Write Pointer. In an effort to alleviate this problem, we’ve introduced a mechanism into the
Graphics Controller that will delay the actual write to the Write Pointer for some programmable amount of time, in
order to give the chipset time to flush its internal write buffers to memory.

There are two register fields that control this mechanism: PRE_WRITE_TIMER and PRE_WRITE_LIMIT. There
is also a staging register placed “in front of” the actual Write Pointer register of the CP. All host writes go into the
staging register and are held there until one of two events occurs: the down-counter of PRE_WRITE_TIMER has
expired; or the host has written the staging register PRE_WRITE_LIMIT-times, forcing the contents of the staging
register into the actual Write Pointer register. The down-counter is seeded with PRE_WRITE_TIMER every time
the host writes to the Write Pointer register address, and expires when it reaches zero. This implementation does not
guarantee a certain time-delay between the host write to the Write Pointer, and the Graphics Controller read of the
system memory; because the host could flood the Graphics Controller with multiple writes (more than the
PRE_WRITE_LIMIT) in a short amount of time, thus overriding the time-delay imposed by the
PRE_WRITE_TIMER. However, since the normal operation of this system is to increase the Write Pointer by some
significant amount with each write, it is likely that by the time the PRE_WRITE_LIMIT has been reached, the data
has in fact been “pushed” through the chipset’s write buffer by subsequent writes to the ring buffer in system
memory.

Note that programming the PRE_WRITE_TIMER and PRE_WRITE_LIMIT to zero allows the chip to behave just
as the Rage128 did.

The above solution is based on a time delay, the assumption being that if the chipset is given enough time, the write
buffer will be flushed to memory, and become available for a coherent read.

4.6 Indirect Buffer Management

The Command Processor has the capability to read commands from other locations in memory, outside of the Ring

© 2008 Advanced Micro Devices, Inc.
Proprietary 16

AM Da Revision 1.3 March 30, 2008

Buffer. These locations are known as Indirect Bufferl and Indirect Buffer2. This is accomplished as follows: there
is a packet in the Primary command stream (being read from the ring buffer) which sets up the Indirect Bufferl
Address and Size registers of the Command Processor. The writing of the Indirect Bufferl Size register triggers the
Command Processor to begin fetching the new stream from the provided address. The last packet to be parsed from
the Primary stream is the one that sets the Indirect Bufferl Address and Size registers. The CP then begins fetching
data from Indirect Bufferl. The data stream in Indirect Bufferl may set up the Indirect Buffer2 Address and Size
registers of the Command Processor. As before, writing of the Indirect Bufferl Size register triggers the Command
Processor to begin fetching the new stream from the provided address. The last packet to be parsed from the
Indirect Bufferl stream is the one that sets the Indirect Buffer2 Address and Size registers. The CP fetches the
correct amount of data from Indirect Buffer2 until The Buffer2 Size is exhausted; it then returns to its interpretation
of packets from Indirect Bufferl. The CP fetches the correct amount of data from Indirect Bufferl until the Bufferl
Size is exhausted; it then returns to its interpretation of packets from the Primary Stream (being read from the ring
buffer).

4.7 Overview of DMA Operation

The DMA engines in the Command Processor fetch commands from the frame buffer memory which tell them what
to do. The command in memory is stored in a structure known as a Descriptor, having a four-doubleword
(DWORD) format as shown below:

Ordinal | Name Bit Function

0 SRC_ADDR 31:0 | Source address

1 DST_ADDR 31:0 Destination address

2 COMMAND 31:0 Command word. (See description below)
3 (Reserved) 310

The COMMAND word has the following format:

31 EOL End Of List Marker

30 INTDIS Interrupt Disable

29 DAIC Destination Address Increment Control
28 SAIC Source Address Increment Control

27 DAS Destination Address Space

26 SAS Source Address Space

25:24 DST_SWAP Destination Endian Swap Control
23:22 SRC_SWAP Source Endian Swap Control

20:0 BYTE_COUNT[20:0] Byte Count of Transfer

There are some constraints on the programming of the Descriptor, as follows: If either the Source or the Destination
is in the register address space, or is programmed to be non-incrementing, then the atomic transfer unit is assumed to
be a DWORD. Namely, the bottom two-bits of the BYTE_COUNT and the Address will be ignored (assumed
“009’)'

Note that a BYTE_COUNT of zero will perform no operation.

Multiple Descriptors may be stored contiguously in memory to make up a Descriptor Table (DT) (see Figure). The
last Descriptor in the Descriptor Table must be marked as such so that the DMA engine knows when to stop
consuming commands.

The programmer provides the DMA engine with a pointer to the beginning of the Descriptor Table, and the DMA

© 2008 Advanced Micro Devices, Inc.
Proprietary 17

AM Da Revision 1.3 March 30, 2008

engine fetches one Descriptor at a time, interprets the command to carry out a transfer, and then moves on to the
next Descriptor in the table. As mentioned above, the DMA engine will stop when it reaches the last Descriptor in
the table.

There is a bit called CP_SYNC in the Descriptor Address register (DMA_xxx_TABLE_ADDR). If this bit is set,
the DMA will “lock-out” the microengine from performing any writes on the register backbone while the DMA is
active. This mechanism can be used to synchronize a DMA-driven stream of register writes to the command FIFO.
among other things.

A DMA channel may have its operation aborted by writing a ‘1’ to the ABORT_EN bit of the DMA_xxx STATUS
register. It is important that the programmer then poll the ACTIVE bit of that same register, waiting for a value of
‘0’, before writing a ‘0’ to the ABORT _EN bit. Once the ACTIVE bit is ‘0’, the programmer is guaranteed to read-
back stable state from all DMA registers.

Memory Space

| TABLE ADDR Reaister—> Dword 0
Dword 1
Dword 2
Dword 3
Dword 4
Dword 5
Dword 6
Dword 7

Descriptor 0

Descriptor 1

Dword (n*4)
Dword (n*4)+1
Dword (n*4)+2
Dword (n*4)+3

Descriptor n (Last)

Figure: Descriptor Table Layout in Memory

An alternate method to writing the DMA_XXX_TABLE_ADDR register to initiate a DMA operation is to write the
descriptors directly to the CP. This saves the fetching of the descriptor table from memory.

Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_ DST_ADDR,
CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORD:s of the descriptor table entry described above. Except that the EOL is hard-coded TRUE in
the COMMAND DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the
descriptor described in all three registers. A table of descriptors can be built from multiple Type-0 packets each
containing the SRC, DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 18

AM Da Revision 1.3 March 30, 2008

4.8 Resetting the Command Processor

To support recovery from a power-down state the read pointer (CP_RB_RPTR) is writable. The read pointer is
initialized by writing the writable read pointer (CP_RB_RPTR_WR). Then, when the write pointer
(CP_RB_WPTR) is subsequently written the contents of the writable read pointer (CP_RB_RPTR_WR) are
transferred to the active read pointer (CP_RB_RPTR). As a precaution, an enable bit must be set in the control
register (CP_RB_CNTL) to allow the contents to transfer to the active read pointer (CP_RB_RPTR). Note that the
read pointer still resets to zero to ensure starting at the beginning of the buffer if the host does not initialize the
writable read pointer (CP_RB_RPTR_WR).

Therefore, a certain sequence of actions is required of the host in order to perform a “clean” soft reset of the CP:
1) Write CP_CSQ_CNTL and CP_CSQ_MODE to zero, effectively disabling the CP.
2) Write to the proper RBBM register to assert and then de-assert the Soft Reset signal to the CP.

3) Setthe RB_RPTR_WR_ENA bit to enable writing of the RPTR if desired not to start from the
beginning of the buffer.

4) Write the CP_RB_RPTR_WR register if it is desired not to start at the beginning of the buffer.

5) Write CP_RB_WPTR, to make it match the RPTR, causing the ring buffer to appear to be empty.
6) Clear the RB_RPTR_WR_ENA bit if no further writes of the RPTR are desired.

7) Write CP_CSQ_CNTL or CP_CSQ_MODE to set the mode back to whatever you want.

4.9 Command Stream Synchronization

In the RBBM, there is an event engine that can be used to synchronize the sending of transactions to the Register

Backbone based on status signals from its clients. The CP however has a mechanism that can directly provide the
Host with knowledge of command status. This mechanism is the eight “SCRATCH?” registers and their associated
functionality.

Associated with the eight “SCRATCH?” registers in the CP are a scratch address register and a write mask. When a
scratch register is written, the CP will subsequently write its value to a location equal to what is programmed in the
SCRATCH_ADDR register plus the number (0 to 7) of the scratch register. The writing of the scratch register’s
value by the CP is qualified by the register’s write mask (SCRATCH_UMSK).

So, at the end of processing an Indirect Buffer, for example, a Type-0 packet can be inserted that writes a data
pattern to SCRATCH_REG1. The driver software can poll the external location SCRATCH_ADDR+1 and when it
changes to the value that was inserted in the Type-0 packet, the Driver will “know” that the CP has completed
parsing the indirect buffer up to that point. Note that this status only indicates that the CP is done to that point, the
data still may be being used by the rest of the pipeline.

© 2008 Advanced Micro Devices, Inc.
Proprietary 19

AM Da Revision 1.3 March 30, 2008

For R5xx an interrupt is added associated with the scratch registers, which is asserted when the scratch register pair
selected is written to memory and is greater than or equal to the pair of values written by the Driver.

The CP can receive sync pulses from the back-end of the pipeline (CBA_CP_SYNC, CBB_CP_SYNC,
CBC_CP_SYNC, and CBD_CP_SYNC). When a pulse from each is received (pulse pair), the CP will write the
targeted scratch register with the corresponding CP_RESYNC_DATA value. The targeted scratch register is
determined by the 3-bit CP_RESYNC_ADDR which is a scratch register offset from the SCRATCH_ADDR base
address.

Because this function uses the SCRATCH_ADDR and SCRATCH_UMSK values, they must be initialized prior to
its use. The CP_RESYNC_ADDR and CP_RESYNC_DATA registers must also be programmed with the target
scratch register offset and the appropriate data respectively before the pulses are received. Both the
CP_RESYNC_ADDR and CP_RESYNC_DATA values are written into 8-deep FIFOs so that multiple
synchronization events can be en-queued in the CP.

If the sync pulses from the CB are asserted before programming the CP_RESYNC_ADDR and
CP_RESYNC_DATA, the logic will still work providing that Dynamic Clocking for the CP is disabled. Receipt of
the sync pulses by the CP does not cause the clocks to be enabled to the CP, so knowledge of these pulses may not
be remembered if Dynamic Clocking is enabled. Writing the CP_RESYNC_ADDR and CP_RESYNC_DATA
registers does enable the clocks to the CP. The “busy” signal to the CG will remain asserted as long as there is
RESYNC data in the ADDR and DATA FIFOs — keeping the clock enabled to the CP.

4.10 Starting the Indirect Streams

A write to the CP_IB_BUFSZ register triggers the Command Processor to start fetching the command stream from
the Indirectl buffer, instead of from the Primary buffer. The CP will continue to fetch from the Indirectl buffer,
starting at the address in the CP_IB_BASE register, and continuing until the CP_IB_BUFSZ amount is exhausted.
Then it will switch back to the Primary stream.

A write to the CP_IB2_BUFSZ register triggers the Command Processor to start fetching the command stream from
the Indirect2 buffer, instead of from the Indirectl buffer. The CP will continue to fetch from the Indirect2 buffer,
starting at the address in the CP_IB2_BASE register, and continuing until the CP_IB2_BUFSZ amount is exhausted.
Then it will switch back to the Indirectl stream.

Note that there are some important rules to follow when starting an indirect stream. Firstly, the write to the
CP_IB_BUFSZ or CP_IB2_BUFSZ register must be the last register-write of a Type 0 or Type 1 packet. The very
next packet that is delivered to the Command Stream Interpreter is the first packet of the respective indirect buffer.
The second rule is that the respective CP_IB_BASE or CP_IB2_BASE register must have been setup with the
proper value before the appropriate CP_IB_BUFSZ or CP_IB_BUFSZ register is written.

In PIO mode, the BUFSZ register still needs to be written with the size of the indirect buffer. Care must be taken to
write this register before the command queue fills in the CP.

© 2008 Advanced Micro Devices, Inc.
Proprietary 20

AM Da Revision 1.3 March 30, 2008

4.11 Writing Host Data to the Command Stream Queue

Either or all of the Primary, Indirectl and Indirect2 streams can be delivered to the Command Processor via host-
programmed writes to the Graphics Controller device. There is a range of register-space addresses assigned to each
of the three streams, that is, one aperture for the Primary Stream, one for the Indirectl Stream, and one for the
Indirect2 Stream. The act of writing to a location in the aperture causes that data to be enqueued to the Command
Stream Queue. Note that the actual address of the written data is inconsequential; the data will be enqueued into the
Command Stream Queue in the order in which it was received from the host.

Note that each of the three streams can be in one of three delivery modes, resulting in nine possible combinations.
The three modes are:

1) OFF: The stream is disabled.

2) PUSH: The host is writing the stream data to the Command Processor. (also known as Programmed
1/0, or PIO mode)

3) PULL: The Command Processor is actively fetching the command stream from memory. (also known
as Bus Master, or BM mode)

Note that the BUFSZ register must be written to initiate indirect buffer parsing in the “PUSH” mode.

© 2008 Advanced Micro Devices, Inc.
Proprietary 21

AM Da Revision 1.3 March 30, 2008

4.12 Writing to the MicroEngine RAM

In order to change a location in the MicroEngine RAM, first load the CP_ME_RAM_ADDR Register with the
address of the RAM into which data is to be written. Next, the host performs two writes; the first must be to the
CP_ME_RAM_DATAH port, and the second to the CP_ME_RAM_DATAL port. Internally, the Command
Processor maintains a 40-bit holding registers which concatenates the lower 8-bits of the DATAH value to the top of
the 32-bit DATAL value, and at the end of the write of the DATAL value, the 40-bit value is written to the RAM at
the location specified by the RAM Address Register. The RAM Address Register is then auto-incremented to point
to the next location in the RAM. This process of writing two data values may be repeated to write to successive
RAM locations without re-loading the RAM Address Register.

4.13 Reading from the MicroEngine RAM

In order to read a location in the MicroEngine RAM, first load the CP_ME_RAM_RADDR Register with the
address of the RAM from which data is to be read. This write triggers the Command Processor to read the 40-bit
data value at that RAM location and transfer it to an internal 40-bit holding register. Also, the RAM Address
Register is auto-incremented to point to the next location in the RAM. Next, the host performs two read cycles, the
first from the DATAH port, and the second from the DATAL port. At the end of the DATAL cycle, the next
location of the RAM is transferred to the 40-bit holding register, and the RAM Address Register is again auto-
incremented. This process of reading two values may be repeated to read from successive RAM locations without
re-loading the RAM Address Register.

© 2008 Advanced Micro Devices, Inc.
Proprietary 22

AM Da Revision 1.3 March 30, 2008

4.14 Starting a DMA Operation
There are two methods to initiate a DMA operation — Descriptor Tables or Direct Descriptor Entry Register Writes.

To program a DMA operation via Descriptor Tables, the programmer has to build the table in the frame buffer first,

being sure to mark the last entry of the list as “End Of List”. Then, the programmer can write the starting address of
the descriptor table into the Descriptor Table Address Queue (DTAQ) through the xxx DMA_TABLE_ADDR port.
The action of writing the first starting address into the DTAQ will trigger the DMA operation.

The type of transfer operation depends on the DMA_COMMAND DWORD in the Descriptor. It controls such
variables as: the length of the transfer, whether the Source/Destination addresses are in memory-space or register-
space, whether the Source/Destination addresses auto-increment with each transfer, and whether an interrupt is
generated when the entire Descriptor Table has been processed.

The second method - Direct Descriptor Entry Register Writes — involves writing the three DMA Entry registers.
Three registers are provided for each of the DMA engines (CP_XXX_SRC_ADDR, CP_XXX_DST_ADDR,

CP_XXX_COMMAND). The contents of these registers have the same fields as the SRC_ADDR, DST_ADDR, and
COMMAND DWORD:s of the descriptor table entry. Except that the EOL is hard-coded TRUE in the COMMAND
DWORD. Writing to the CP_XXX_COMMAND register initiates a DMA operation using the descriptor described
in all three registers. A table of descriptors can be built from multiple Type-0 packets each containing the SRC,
DST, and COMMAND data.

© 2008 Advanced Micro Devices, Inc.
Proprietary 23

AM Da Revision 1.3 March 30, 2008

5. PM4
5.1 Packet Types

When programming in the PM4 mode, we do not need to write directly to registers to carry out drawing operations
on the screen. Instead, what we need to do is to prepare data in the format of PM4 Command Packets in the system
memory, and let the hardware (Microengine) to do the rest of the job.

Four types of PM4 command packets are currently defined. They are types 0, 1, 2 and 3 as shown in the following
figure. A PM4 command packet consists of a packet header, identified by field HEADER, and an information body,
identified by IT_BODY, that follows the header. The packet header defines the operations to be carried out by the
PM4 micro-engine, and the information body contains the data to be used by the engine in carrying out the
operation. In the following, we use brackets [.] to denote a 32-bit field (referred to as DWORD) in a packet, and
braces {.} to denote a size-varying field that may consist of a number of DWORDs. If a DWORD is shared by more
than one field, the fields are separated by |’. The field that appears on the far left takes the most significant bits, and
the field that appears on the far right takes the least significant bits. For example, DWORD [HI_WORD |
LO_WORD] denotes that HI_WORD is defined on bits 16-31, and LO_WORD on bits 0-15. A C-style notation of
referencing an element of a structure is used to refer to a subfield of a main field. For example,
MAIN_FIELD.SUBFIELD refers to the subfield SUBFIELD of MAIN_FIELD.

Type-0 packet

— 33222222222 1111
Bit position 1009876 54321009876543210287¢549334°
Packet header 00 COUNT a BASE_INDEX
REG_DATA 1
REG_DATA_2
IT_BODY
REG_DATA n
Type-1 packet
—— 222222 2 2 U U 411
Bit position 10/ 98 7165143 210098765 4321028994344 °
Packet header 01 Reserved REG_INDEX2 REG_INDEX1
REG_DATA_1
IT_BODY
REG_DATA_2

© 2008 Advanced Micro Devices, Inc.
Proprietary 24

AMDA1

Revision 1.3 March 30, 2008

Type-2 packet

... 32222 2 2 2 2 2 2 Uy 4111 T
Bit position 100/ 9/ 8| 7/ 6| 5/ 4/ 3/ 2/ 1] 0] o 8| 7| 6| 5/ 4/ 3/ 2{ 1] 0| *| & 7| € O 4 F Y °
Packet header 10 Reserved
Type-3 packet
— 32222222 2 2 2 Y U a1t
Bit position 10/ 9l 8| 7/ 6| 5| 4/ 3/ 2/ 1] 0| 9| 8| 7| 6| 5| 4/ 3 2| 1] 0] °| & 7| ¢ 9 4 33 Y ©
Packet header 11 COUNT IT_OPCODE Reserved
DATA 1
DATA 2
IT_BODY
Data n

5.1.1 Type-0 Packet

Functionality

Write N DWORD:s in the information body to the N consecutive registers, or to the register, pointed to by the
BASE_INDEX field of the packet header.

Format
Ordinal Field Name
1 [HEADER]
2 [REG_DATA 1]
3 [REG_DATA 2]
N+1 [REG_DATA N]

Header Fields

Bit(s) Field Name Description

12:0 BASE_INDEX The BASE_INDEX][12:0] correspond to byte address bits [14:2]. So the
BASE_INDEX is the DWORD Memory-mapped address.
The BASE_INDEX field width supports up to DWORD address: OX7FFF.

14:13 Reserved Reserved for future expansion of address space.

15 ONE_REG_WR | 0:- Write the data to N consecutive registers.

1:- Write all the data to the same register.

29:16 COUNT Count of DWORD:s in the information body. Its value should be N-1 if there
are N DWORD:s in the information body.

31:30 TYPE Packet identifier. It should be